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high emission angles, i.e., near the planetary limb. The atmosphere

is assumed to be optically thin in this model, so optical depths

greater than 0.2 are not modeled using this formulation. Hapke's
bidirectional reflectance function is used to model the surface scat-

tering, assuming a phase function of the form P(a) - ! + b cos(a),

Where a is the phase angle. Dust was assumed to be responsible for

all the atmospheric scattering in this model ('Rayleigh scattering in

the martian atmosphere is insignificant in visible light).

The effects of turbulence in the terrestrial atmosphere ("seeing '')

upon groundbased Mars images were simulated by convolving a

smearing function similar to that used by Lumme [5] with theoreti-

cal profiles. The results of this convolution indicate that changes in

optical depth of 0. I can be observed from Earth even with 2 arcsec

seeing if the atmosphere is optically thin (small changes in opacity

cannot be distinguished in the optically thick case). The shape of the

photometric profile is not diagnostic of scattering in all cases, but the

absolute reflectance can be used to infer the optical depth of dust in

the atmosphere. Therefore, it should be possible to determine the

optical depth of aerosols in an optically thin martian atmosphere

using well-calibrated groundbased images of Mars. To test the vi-

ability of this method, we are comparing Viking data with nearly

simultaneous groundbased photographs of Mars taken during the

1977-1978 apparition. The results of this comparison will be re-

ported at the workshop.
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during the last 3.8 b.y. Sputtering is capable of efficiently removing

all species from the upper atmosphere including the light noble

gases; N is removed by photochemical processes as well. Due to

diffusive separation (by mass) above the homopause, removal from

the top of the atmosphere will fractionate the isotopes of each

species with the lighter mass being preferentially lost. For C and O,

this allows us to determine the size of nonatmospheric reservoirs

!hat mix with the atmosphere; these revervoirs can be CO z adsorbed

in the regolith or HzO in the polar ice caps. We have constructed both

simple analytical models and time-dependent models of the loss

from and supply of volatiles to the martian atmosphere.

Both Ar and Ne require continued replenishment from out-

gassing over geologic time. For Ar, sputtering loss explains the

fractionation of 36Ar/3SAr without requiring a distinct epoch of

hydrodynamic escape (although fractionation of Xe isotopes still

requires vet 3, early hydrodynamic escape). For Ne, the current ratio

of -'2Ned-'°Ne represents a balance between loss to space and contin-

ued resupply from the interior, the similarity of the ratio to the

terrestrial value is coincidental. For Ni, the loss by both sputtering

and photochemical escape would produce a fractionation of 15NP'_N

larger than observed; an early, thicker CO z atmosphere could miti-

gate the N loss and produce the observed fractionation as could

continued outgassing of juvenile N. Based on the isotopic con-

straints, the total amount of CO z lost over geologic time is probably

of order tens of millibars rather than a substantial fraction of a bar.

The total loss from solar-wind-induced sputtering and photochemi-

cal escape, therefore, does not seem able to explain the loss of a

putative thick, early atmosphere without_quirin_ formation of

extensive surface carbonate deposits N94" 33209
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The SNC meteorites and the measurements of the Viking landers

provide our only direct information about the abundance and isoto-

pic composition of martian volatiles [I.2]. Indirect measurements

include spectroscopic determinations of the D/H ratio of the martian
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reservoirs on Mars, largely as inferred from the meteoritic evidence.

This view is that the martian mantle has had several opportunities for

dehydration and is most likely dry, although not completely de-
gassed. Consequently, the water contained in SNC meteorites was

most likely incorporated during ascent through the crust. Thus, it is

possible that water can be decoupled from other volatile/incompat-

ible elements, making the SNC meteorites suspect as indicators of

water inventories on Mars.
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We examine the effects of loss of Mars atmospheric constituents

by solar-wind-induced sputtering and by photochemical escape

voirs on Mars [4]. The first, best associated with the Chassigny

meteorite, has a solar 129Xe/13---Xe ratio of -1 [4]. The second, best

associated with shock glasses from the EETA79001 shergottite, has

J_Xe/132Xe -2 [4] and is within error of the Viking measurement of

martian air [I]. Because Chassigny is a cumulate igneous rock that

appears to have experienced minimal weathering [5,6] and interac-

tion with crustal materials [7] (but see below!), it is assumed here

that Chassigny's anhydrous, volatile-element component is derived
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from the martian mantle. Conversely, the volatiles contained within

the shock glasses of EETA79001 are thought to be derived from the

martian atmosphere. The simplest alternative to this scenario is that

the different subsets of SNC meteorites did not originate from the

same planet [8].
The Mantle Reservoir: I advocate that the martian mantle has

had little input from crustal or atmospheric sources and is most

likely dry. The mantle of Mars is probably more depleted than the

MORB mantle of the Earth [end (Mars) = +20-25 vs. ey a (MORB) =

+10-12]. I also believe that the chemical and isotopic characteris-

tics of the martian mantle were established very early. A corollary

of this perspective is that most of the water contained in SNC

meteorites is crustal.

A final (and more model-dependent) inference is that the martian

mantle is relatively homogeneous and has been so over most of the

planet's history. The logic, as presented by Jones [7], is somewhat

convoluted: (I) Long-lived parent-daughter pairs, such as 23aU-

2orpb, _'tRb-_7Sr, and 147Sm-14SNd, indicate that the ~180-m.y.

shergottites [9] were produced from a mantle chemically similar to

that which produced the nakhlites (and Chassigny) at ~1.25 b.y.

(2) The crucial assumption behind this extrapolation from 1250 m.y.

to 180 m.y. is that the parent-daughter ratio of the mart ian mantle that

pertained between 4.5 aeons and 1.25 aeons also pertains subsequent-

ly. (3)The simplest way for this assumption to be true is if there was

an early differentiation event that produced (a) enriched crust; (b) a

homogeneous, highly depleted mantle; and (c) a metallic core. This

depleted mantle was then tapped at various times, producing basalts

over the history of the planet.

(Although the complexities arising from short and intermediate-

lived nuclei, such as I_Sm and _-_sU, indicate that this model is

somewhat oversimplified [7,10], it can nevertheless explain the

-4.5-aeon shergottite whole-rock Rb-Sr isochron [7]. And, as indi-

cated above, the model can also isotopically relate the various SNCs

to a common mantle source region, regardless of their individual

crystallization ages.)
The large difference between the t29Xe/132Xe ratios of the crust

and mantle is most plausibly attributed to the decay of I-"91 (tl! 2 w

16 m.y.). If so, this iodine must have been "degassed'" very early in

the planet's history, consistent with the model given above, which

was based on long-lived nuclei. There has presumably also been

insignificant transport of Xe from the crust (or atmosphe_) to the

mantle, since mantle (Chassigny) Xe is isotopically indistinguish-

able from solar. This is consistent with the inference from Viking

imaging that terrestrial-style plate tectonics and slab subduction has

not been active on Mars for -4 b.y. [ I I]i Consequently, it is inferred

that the martian mantle and its volatiles have remained effectively

isolated over most ofthe history of the planet. Accordingly, transport

of voiatiles has been chiefly from mantle to crust. The exception to

this rule is water, since the martian mantle is thought to be dry.

Desiccation of the Martian Mantle: The SNC meteorites

contain significant water [2] and it has often been assumed that that

water is mantle-derived [12]. There are at least three reasons to

suspect that this is not so: (I) Initially, before the formation of a core,

there was presumably excess metal [13,14], which should have

quantitatively reacted with oxidized phases, such as water or hy-

droxyl ions. (2) Following core formation, there was an early epi-

sode of crust formation. Consequently, the martian mantle should be

depleted in incompatible, crust-forming elements, including water.

(3) The water in terrestrial magmas is most probably not juvenile,

but subducted, recycled water [15]. Since subduction does not

appear to be an important process on Mars and since the Xe isotopic

ratio of the mantle has remained unchanged relative to solar, it

seems unlikely that volatile transport from crust to mantle has been

significant (but see below).

An important piece of evidence in support of this view is the

recent measurement of the D/H ratios of hydrous minerals in the

SNC meteorites. At this writing, all measurements of water in SNCs

are compatible with a single, isotopically heavy source with a D/H

ratio of +4000%_ [16,17]. This value is so large that relatively

massive loss of H from the planet, relative to D. is implied. Also,

since this D/H ratio is in agreement with spectroscopic measure-

ments of the martian atmosphere [3], the most likely source of SNC

water is the crust or the atmosphere, which could have lost H to

space.

Again, these inferences also imply that there has probably been a

decoupling between water and other volatile/incompatible elements.

For example, in the case of Chassigny, water is inferred to have been

acquired during passage through the crust without addition of other

volatiles such as Xe. Consequently, it seems difficult, using the

SNCs, to make meaningful deductions about the water inventory of

Mars.

Oxidation of the Martian Mantle: Has there been absolutely

no cycling of water into the martian mantle over geologic time?

Probably not. The phase assemblages of SNC meteorites imply that

the redox state of the martian mantle is --QFM, much like that of the

Earth [5]. This O fugacity is considerably higher than is inferred
from most models of core fomtation [ 13]. Consequently, the addi-

tion of small amounts of oxidized materials to the martian mantle

have probably raised the mantle's O fugacity over geologic time.

The lever arm here is quite large, as small amounts of such oxidants

go a long way. Only IO ppm of material with an intrinsic fo 2of lO-
is required to change a reduced mantle, with an fo 2 of IO-12, to an

oxidized one (fo 2 - IO-X).

Atmospheric/Crustal Reservoir: The inferences from the

Viking measurements and those based on the shock glasses of

EETA79001 are amazingly consistent [18]. Consequently, it appears

that we know the chemical and isotopic composition of the martian

atmosphere quite well. This is in stark contrast to the convoluted and

torturous machinations that have been required to decipher the SNCs

and the story they have to tell. In brief, the martian atmosphere is

dominated by COi. has a ve-ry large a_ArPrAr ratio of ~3000 (vs.

-300 for the Earth), a 129Xe/132Xe ratio of~2 (vs. 0.98 for the Earth),

a I-_N/;4N ratio of +600'7_,_ (relative to terrestrial air), and a D/H ratio

of -+4000%° (-5 times that of terrestrial ocean water). Thus, the

atmosphere appears to be enriched in radiogenic components (*_Ar

and I_-'_Xe), as well as in the heavier isotopes of stable elements (tSN

and D). The enrichment of heavy stable isotopes is not well under-

stood, although various atmospheric loss processes are likely to be

responsible [ 19]. However, the enrichment of radiogenic isotopes is

most plausibly attributed to crustal degassing over geologic time.

Mantle degassing will presumably only dilute the effect of the crust-

derived component. Thus, if the present atmosphere can be used as

a guide, it appears that crustal degassing has dominated mantle

degassing over the history of the planet.

Summary: There is currently evidence for two ancient, iso-

lated, and quite distinct volatile element reservoirs on Mars. One is

attributed to the martian mantle and is believed to be dry. The

second has been shown to be much like the martian atmosphere and/
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or the martian crust and is likely to be much wetter. SNC meteorites

have probably gained their water by assimilation of crustal materi-

als, and thus are probably poor indicators of the abundance of water

on Mars.
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TIlE NORTHERN PLAINS MSATT MEETING, AND A

CALL FOR A FIELD-ORIENTED SUCCESSOR TO MSATT.
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The Workshop on the Martian Northern Plains: Sedimentologi-

cal, Periglacial, and Paleoclimatic Evolution (August 9-15, 1993)

formally was devoted to a review of our knowledge of the martian

northern plains and presentation of recent ideas pertaining to the

geologic and climatic evolution of this interesting region. The meet-

ing was held in Fairbanks to allow easy access to Mars-like terrains

in central and northern Alaska. There is no place on Earth that is a

close analog of the martian northern plains, but parts of Alaska come

reasonably close in some respects, so we may expect that some of the

processes occurring there are similar to processes that have occurred

(or are hypothesized to have occurred) on Mars. The meeting was

sited in Fairbanks because of (I) the accessibility of Mars-like

landscapes, (2) the availability of logistical support facilities, and

(3) the willingness of knowledgeable faculty at the University of

Alaska to lead field trips.

The meeting organizers invited the participation of four scien-

tists (T. P(_w{£, J. Beg_t, R. Reger, and D. Hopkins) with expertise

in Alaskan geology, cold-climate geomorphology, and cold-climate

physical processes. These scientists actively participated in the

workshop and led us in two major field trips and a low-altitude

overflight. Field Trip I (2 days) was to the Alaska Range and interior

Alaska between Fairbanks and the Alaska Range; Field Trip II

(I day) was in the Fairbanks area; and the overflight (I day) took us

to Barrow (where we stopped and engaged in a brief field excur-

sion), the Prudhoe Bay area, and the Brooks Range. The formal part

of the meeting (2 days) was capped by an informal evening discus-

sion, principally by the "terrestrial experts," that focused around a

small selection of Mars slides that had engendered considerable

discussion and controversy. A synopsis of this important discussion

and of the field trips and overflight have been presented in the

formal meeting summary [1].

Approximately 20 cameras recorded our field activities and the

highlights of our overflight, resulting in some remarkable images of

thermokarst, pingoes, ice-wedge polygons, sorted stone stripes and

stone circles, gelifluction sheets, ice-cored moraine, eskers, alpine

glaciers, the Arctic coast, and many other periglacial and glacial

landforms. Field trip participants were introduced to some land-

forms that they had never observed previously (many had not even

heard of them), most notably the nivation hollow and the cryoplanation

terrace, both of which are periglacial features that are produced

through the action of melting snow packs over permafrost, and both

of which may have Mars analogs. The interaction of eolian, glacial,

and periglacial processes, the results of which were observed in the

the field, left indelible images in the minds and on the films of many

participants. For instance, classic ventifacts on the summit of a

moraine, and thick deposits of loess composed of dust that was

originally derived from outwash plains, attested to the importance

of wind modification or eolian genesis of many landforms and rock

units that are an integral part of the regional glacial geologic assem-

blage. This series of observations of the interplay of wind and ice

processes became a sharply imprinted reminder that multiple pro-

cesses are likely to have operated in concert on Mars as well,

The involvement of Earth scientists was a major factor in the

success of this field-oriented workshop. Many participants left the

meeting with the conviction that interaction between the Mars and

Earth science communities, as exhibited at the northern plains

meeting, should continue, and that the combination of formal work-

shops with field studies is the nominal way for the deepest interac-
tion to occur.

Call for Future Field-oriented Meetings of the Mars Sci-

ence Community: It is widely acknowledged that Mars is an Earth-

like planet (relative to other objects in the solar system). Accord-

ingly, virtually all geomorphological interpretations of Mars are

based, in part, on analogical inferences drawn directly from (or

modified from) observations and interpretations of terrestrial geo-

logic features. This is a justifiable basis from which to proceed in our

studies of martian geological history, climate evolution, and atmos-

pheric evolution, because there are insufficient data to build a

geology of Mars from a totally "martian" perspective.

Some of the most dynamic recent controversies in Mars science

have centered on geologic (or geomorphologic) interpretations of

features that seem to speak differently to different observers. The

controversies and the interpretations, of course, are in the minds of

the observers, not in the rocks of Mars! The rocks surely have their

stories to tell in all their fine detail, and it is the planetary geologists'

job to decipher these stories. A roughly consistent geologic explana-

tion of the martian surface has eluded Mars geologists, as a group,

thus far. The problem is that, with the data we have, there are too

many processes on Earth that m ight have formed many of the varied

martian landforms. One can excuse the physical modelers when they

sieze on the geologists' consistent descriptions of a very few types of

landforms (e.g., sand dunes and volcanos) and frame very specific,

and sometimes overly conservative, models around these limited

observations and interpretations. Many geologists consider much of

the recent Mars modeling to have very little relevance to the most

dynamic episodes in martian geologic history; this is perhaps inevi-

table until the Mars geologists reach a consensus on a few of the

major issues, and this is not likely to happen until new types of data,

especially "ground truth," are obtained.


